Solvability of boundary value problems for impulsive fractional differential equations in Banach spaces
نویسندگان
چکیده
منابع مشابه
Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملImpulsive Fractional Differential Equations in Banach Spaces
This paper is devoted to study the existence of solutions for a class of initial value problems for impulsive fractional differential equations involving the Caputo fractional derivative in a Banach space. The arguments are based upon Mönch’s fixed point theorem and the technique of measures of noncompactness.
متن کاملBoundary Value Problems for Fractional Differential Inclusions in Banach Spaces
This paper is concerned with the existence of solutions of nonlinear fractional differential inclusions with boundary conditions in a Banach space. The main result is obtained by using the set-valued analog of Mönch fixed point theorem combined with the Kuratowski measure of noncompactness. Mathematics subject classification (2010): 26A33, 34A60, 34B15.
متن کاملNew Boundary Value Problems for Higher Order Impulsive Fractional Differential Equations and Their Solvability
Firstly, the surveys for studies on boundary value problems for higher order ordinary differential equations and for higher order fractional differential equations are given. Secondly a simple review for studies on solvability of boundary value problems for impulsive fractional differential equations is presented. Thirdly we propose four classes of higher order linear fractional differential eq...
متن کاملPositive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces
and Applied Analysis 3 To prove our main results, for any h ∈ C J, E , we consider the Neumann boundary value problem NBVP of linear impulsive differential equation in E: −u′′ t Mu t h t , t ∈ J ′, −Δu′|t tk yk, k 1, 2, . . . , m, u′ 0 u′ 1 θ, 2.3 where M > 0, yk ∈ E, k 1, 2, . . . , m. Lemma 2.4. For any h ∈ C J, E , M > 0, and yk ∈ E, k 1, 2, . . . , m, the linear NBVP 2.3 has a unique soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2014
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2014-202